Una demostración elegante

El teorema de Pitágoras es una de esas cosas que “todo el mundo sabe”. Lo que, a lo mejor, no todo el mundo sabe es cómo demostrarlo. Hay varios caminos para alcanzar una demostración, que se pueden leer en el artículo de Wikipedia al respecto. Creo que ninguna de estas demostraciones es particularmente difícil de entender, pero sí se ve que algunas dan más trabajo que otras, siendo la más simple (en mi opinión) la demostración de Bhaskara. Pero existe otro camino para demostrar el teorema (obra de Einstein cuando era chico, según dicen), que no aparece en el artículo de wikipedia y que vale la pena conocer por su simplicidad.

Para la demostración es necesario utilizar un resultado adicional, que si bien no es evidente, tampoco es difícil de ilustrar:

Empecemos con el primer paso de la demostración de Bhaskara. Con un triángulo rectángulo abc y tres copias más del mismo formamos un cuadrado de lado c, la hipotenusa del triángulo.

02-bhaskara

Ahora, en lugar de seguir con el procedimiento de Bhaskara, miremos el dibujo un momento. Cualquier triángulo cuya hipotenusa sea c puede usarse para formar un cuadrado con el mismo perímetro (4c), pero distintos triángulos van a dar distintas áreas para el cuadrado coloreado en el interior. De hecho, no cuesta mucho ver que el área de este cuadrado interior depende únicamente del ángulo φ entre la hipotenusa c y el cateto menor de abc (puede elegirse el otro también). Y acá aparece un resultado lindo: El área A del triángulo es una fracción del área total del cuadrado de lado c, y esta fracción es función únicamente del ángulo φ. O sea que para cualquier triángulo rectángulo de hipotenusa c puede escribirse su área como: Ac2ƒ(φ).

La demostración:

Miremos ahora el triángulo, y notemos puede descomponerse en otros dos triángulos similares de hipotenusas a y b.

triangulo

Usando el resultado de arriba podemos escribir las áreas de estos dos triángulos como a2ƒ(φ) y b2ƒ(φ), y como el área del triángulo mayor es igual a la suma de las áreas de estos dos, tenemos que

c2ƒ(φ)=a2ƒ(φ) + b2ƒ(φ)

Dividiendo todo por ƒ(φ) resulta

ca2 + b2

que es lo que dice el teorema de Pitágoras.

Anuncios

2 pensamientos en “Una demostración elegante

  1. Pingback: Una demostración elegante

  2. Pingback: Homero y el mago de Oz | Reglas y Relojes

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s